
POOMA StyleGuide
version 1.2
January 2, 1996

Notes: Changes from the last version include:
• variable declarations should all occur at the head of a function (makes commenting much
easier)
• for statement does not initialize the loop variable within the for statement (g++ get’s upset)

1. Control Structure Style
1.1 if statement

For the if statement, place the starting bracket on the same line as the control statement
with a space between the right parenthesis and the left bracket. after the keyword if,
insert a space before the left parenthesis. Separate the tokens within the if conditional
with spaces. Each line within the braces should be indented by two spaces. For nested
control structures, the indentation should two times the level of nesting. The closing
brace for the if construct is placed on a separate line.

If the expression is one line and fits on a single line with the if expression, place the
expression on the same line as the if keyword and discard the enclosing braces.

Example:

1.2 for statement
For the for statement, place the starting bracket on the same line as the control
statement with a space between the right parenthesis and the left bracket. after the
keyword for, insert a space before the left parenthesis. Separate the tokens within the for
expressions with spaces. Each line within the braces should be indented by two spaces.
For nested control structures, the indentation should two times the level of nesting. The
closing brace for the for construct is placed on a separate line.
The loop variable for the for loop needs to be initialized before the for loop rather than
in the for statement itself. The reason for this is due to non-portability across compilers.

For any given function, initialize all the loop variables at the beginning for the function
and add the comment:
For very small routines and functions it is permissable to initialize the loop variable
within the for statement. However, in cases where the same loop variable is used more
that once in a routine, the loop variables must be declared at the beginning of the
function.
// loop variables
 Declare the loop variable to be an int within the for expression rather than at a separate
point in the code. This will help the user to associate the variable as being a loop
variable and is consistent with the philosophy of localizing data declaration with data
initialization.

If the expression is one line and fits on a single line with the for expression, place the
expression on the same line as the for keyword and discard the enclosing braces.

Example:

1.3 while statement
For the while statement, place the starting bracket on the same line as the control
statement with a space between the right parenthesis and the left bracket. after the
keyword while, insert a space before the left parenthesis. Separate the tokens within the
while expressions with spaces. Each line within the braces should be indented by two
spaces. For nested control structures, the indentation should two times the level of
nesting. The closing brace for the while statement is placed on a separate line.

1.4 switch statement
For the switch statement, place the starting bracket on the same line as the control
statement with a space between the right parenthesis and the left bracket. after the
keyword switch, insert a space before the left parenthesis. Switch statements should use
enumerations wherever possible to aide in code readability. When placing the
enumerator inside the switch statement, allow a space before and after the token between
the parentheses.
Within the switch statement, there will be at least one case statement (more likely
several...). Each case keyword must be indented two spaces in from the column on
which the switch keyword begins. The token following the case keyword must be
immediately suffixed by a colon, a space, and then a left brace on the same line. The
body of the case statement is to be indented two more spaces and terminated with a
break statement.
Finally, every switch construct must have default as its final case. This allows for code
extensibility and is good debugging practice. The default construct is formatted the
same way a case construct is formatted with the exception of the keyword case being
replaced by default.
The closing braces for the switch, case, and default constructs are placed on their own
line.

2. Expression Style
In general, expressions should utilize white space to help bring out the structure of the
expression.

Here, the second line utilizes spaces to delineate between the addition and multiplication
operations, making the expression far more readable.

Here, the second line utilizes spaces to help delineate the nesting of parentheses.

Although no explicit style will be expounded here, it is recommended that expressions utilize
spaces to help delineate the logic contained in blocks of tokens.

3. Variable Declaration and Initialization

All variable should be declared and commented at the beginning of the module in which they are
utilized. Where possible, the variables should be initialized on the same line as they are declared.
Barring this, the variables should be initialized close to the head of the module where that
variable is declared.

Note: on some compilers (such as the T3D), there is a problem with initializing variables inside
of a case statement which alleviated by enclosing the case in brackets.

4. Variable and Function Naming Conventions

All variable should contain alpha numeric characters with the words being separated by
capitalization. Underlines (the "_" character) should be used only for functions, not data
variables. Member data variables are distinguished from local variable data by capitalizing the
first letter. Non-member data only has the interior words capitalized, not the first letter.

Examples:

MyVar - member data
myVar - local data
numParticles - local data
NumCells - member data
MyReallyUbsurdlyLongVariable - member data
i - local data
hello_world - function

5. Class Design
5.1 Public, Protected, and Private

Each class definition should be placed in a separate .h file (unless the class is a small
helper class). The interface definition should consist first of public members, then
protected members, then private members.
In terms of formatting, the opening brace for the class definition occurs on the same line
as the class keyword. The closing brace for the class definition is on a line by itself. The
private, protected, and public keywords must start on the same column as the keyword
class.

Example:

class MyClass {

public:

protected:

private:

}

5.2 Requisite Member Functions
All classes should include:
• default constructor (no arguments)
• copy constructor
• destructor
• op=
• op<< (overloaded with a stream)
 Depending on class functionality, it is advisable to include
• op==
• op!=
• op>>(overloaded with a stream)

All classes should provide functionality through the member functions which allows the
state of an object created with any non-default constructor to be attainable with an object
created by the default constructor and invocations of suitable accessor and helper
functions.
In the public interface, the constructors and destructors should be declared first, next, all
accessor functions should be declared, next the op= function, and next the op<<. The
rest of the public interface follows.

Note that an object created by the first constructor could also be created by a call to the
default constructor and then the set_MyData member function.

5.3 member data access
To promote data encapsulation, all member data should be private. It is up to the class
designer to determine which data members are accessible through member functions.
These member functions to access member data must take a unique form which entails
prefixing the actual name of the member data with a get_ , set_ , or return prefix.
• The get_ prefix return the member data value.
• The set_ prefix is a member function which sets the member data's variable.
• The return_ prefix is a member function which return a reference to the member
data.

Examples:

Given the integer member data MyData of class MyClass the accessor functions in the
class would look like:

In this part of the class definition please follow the following guidelines:

The "get" member accessor functions should return a const value.
Group the accessor functions in the same area of the class interface.
Order the get, set, and return accessors in the same order that they appear in declared
within the class. In the above example, MyData is declared before MyData2 and so the
MyData accessor functions are defined before the MyData2 accessor functions in the
public interface.

6. Constness
Use wherever possible. Constness prevents you from changing data that isn't supposed to be
changed. A member function is const if it doesn't alter member data or any other data it may
access. One interesting recommendation was to declare the overloaded assignment operator
("=") as const! This prevents statements like "(a=b)=c" which might be confusing (the a=b part
cannot be performed because the result is const and cannot appear on the left-hand side of an
assignment operator), and it allows stuff like "a=a" (if the assignment operator was not declared
const in addition to the right-hand side argument, this would do a costly const to non-const
casting).

7. Preprocessing directives
Every .h file should have a preprocessing directive to check and see if the file has already been
included during compilation. These preprocessing directives should take the name of the class in
all capital letters followed by an “_H”. For example, the class “MyClass” would have a .h file
which started with the preprocessing directives

8. Commenting
8.1 Comment Style

In general, comments should focus on the “why” rather than the “how”. One wants to
avoid the comments merely repeating what the code is already saying. The comments
should reflect higher level ideas that can not be directly inferred from the code itself. A
reader of a function should be able to read through the comments in the function and
obtain a good idea of what the function does.

The Following are general safety tips:
• Keep comments close to the code they describe
• Comment all special uses of the language or environment
• Justify violations of good programming style
• Document non-intuitive regions of code
• Avoid abbreviations
• Delete out-of-date comments, these are deadly
• Comment as you go along, don’t wait to do it all when you’ve forgotten what you
wrote!

8.2 Format
The header comments at the beginning of files utilize the /* and */ constructs,
everywhere else, the // construct is utilized.

8.3 Major and Minor comments

While commenting your code, distinguish between major and minor descriptions
through indentation of the // comments.
For major comments, start commenting at the first column with the // structure.
For minor comments, comment at the current level of code indentation.

8.5 Control Structures
Unless completely self evident, every control structure which contains more than a
single line of code should have a proceeding comment.
For very long control structures, comments should be placed after the closing right
bracket to help readability. Control structures that can be viewed on a single page in a
text editor do not require these comments, the structures can be discerned from the code
indentation.

8.6 Endline comments
Endine comments should be used to clarify a single line of code. Endline comments
should not be used for multiple lines of codes since it is difficult to tell which lines are
being addressed by the comment.
There are three main uses for endline comments:
• To annotate data declarations
• For code maintenance notes (such as bug fixed)
• Marking the end of long control structures

8.7 Files
8.7.1 .h file

The beginning of every .h file should have a header which includes in the
following order:

1. a copyright header
2. the class name
3. an author list
4. a class description
5. version dates

6. a list of parent classes
7. a list of children classes
8. a list of participating classes
9. revisions

The copyright header will delineate code ownership and responsibility in
addition to the conditions under which the code my have been co-developed.
The exact form of the copyright header is described in the subsection below.
The Primary Author for the class should be listed first. Anyone listed as an
author for the Class should be familiar with all aspects of its design and
implementation.
The version dates should reflect when the class was added to the specified
version of the FrameWork. With every new version number of the FrameWork,
the date should specify when the classes functionality within the FrameWork is
verified.
The parent and children classes reflect the position of the class within the
hierarchy of the POOMA FrameWork.
The list of Participating classes describe all classes required by the class in the
.h files.
Revisions must be listed with the date, person responsible, and a description of
the revision. The revisions should appear in an enumerated list to enable
concise referencing. Furthermore, revisions in the .h file should only pertain to
changes in the class interface. Changes to the implementation of a given
member function should be put into a revision comment in the accompanying
.C files.

EXAMPLE:

The below would be a header for the file Stencil.h

When the Revisions list gets above 5 items, the list should be placed at the end
of the .h file to avoid several page aheads in the editor to get to the class
description. In this case the Revisions statement should indicate how many
revision exist and that they are located at the end of the file:

EXAMPLE:

The below would be a header for the file Stencil.h

8.7.2 .C file
The beginning of every .C file should have a header which includes in the
following order:

1. a copyright header
2. the file name
3. an author list
4. file description
5. date of construction,
6. revisions

The copyright header will delineate code ownership and responsibility in
addition to the conditions under which the code my have been co-developed.
The exact form of the copyright header is described in the subsection below.
The Primary Author for the class should be listed first. Anyone listed as an
author for the Class should be familiar with all aspects of its design and
implementation.
If the file contains member function to a particular class, the file description
should simply describe what member functions of that class are contained
within the file (for example - just the I/O routines, just the functions pertaining
to particle swap, all member function for the class, etc....)
The Date should reflect when the class was initially added to the FrameWork.
Revisions must be listed with the date, person responsible, and a description of
the revision. The revisions should appear in an enumerated list to enable
concise referencing. Furthermore, revisions in the .C file should not pertain to
changes in the class interface (those revision comments should be made in the
.h file). The .C file is where changes to the implementation of a given member
function should be placed.

As was the case with the header file, when the Revisions list gets above 5 items,
the list should be placed at the end of the .C file to avoid several page aheads in
the editor to get to the class implementation. In this case the Revisions
statement should indicate how many revision exist and that they are located at
the end of the file.

8.7.3 The Copyright header:
The copyright header will delineate code ownership and responsibility in
addition to the conditions under which the code my have been co-developed.
With respect to the current contracts, and grants in place it seems there are
eight valid modes of development.
1. The class was developed by LANL
2. The class was developed by NMSU
3. The class was developed by DSS
4. The class was developed by DSS under contract PU-XXXXXXXX.
5. The class was co-developed by DSS and LANL.
6. The class was developed by Parallel Solutions
7. The class was developed by Parallel Solutions under contract PU-XXXXX
8. The class was co-developed by Parallel Solutions and LANL.

For each of these cases, the copyright header should be as follows:

LANL developed:

/***

 (C) Copyright 1996 The Board of Trustees of the
 University of California
 All Rights Reserved

NMSU developed:

/**

 (C) Copyright 1996 The Board of Trustees of the
 New Mexico State University
 All Rights Reserved

**

DSS developed:

/***

 (C) Copyright 1996 Dakota Software Systems, Inc.
 All Rights Reserved

**

DSS developed under contract.

/***

 (C) Copyright 1996 The Board of Trustees of the
 University of California
 All Rights Reserved

**
 Developed for Los Alamos National Laboratory by
 Dakota Software Systems, Inc Under Contract XXXXXX.
**

DSS and LANL co-developed.

/***

 (C) Copyright 1996 The Board of Trustees of the
 University of California
 All Rights Reserved

**
 Co-Developed by Los Alamos National Laboratory and
 Dakota Software Systems, Inc .
**

Parallel Solutions developed:

/***

 (C) Copyright 1996 Parallel Solutions, Inc.
 All Rights Reserved

**

Parallel Solutions developed under contract.

/***

 (C) Copyright 1996 The Board of Trustees of the
 University of California
 All Rights Reserved

**

 Developed for Los Alamos National Laboratory by
 Parallel Solutions, Inc Under Contract XXXXXX.
**

Parallel Solutions and LANL co-developed.

/***

 (C) Copyright 1996 The Board of Trustees of the
 University of California
 All Rights Reserved

**
 Co-Developed by Los Alamos National Laboratory and
 Parallel Solutions, Inc .
**

8.8 Functions
8.8.1 Description

Directly before the function declaration, the comments should describe the
function in a few sentences. If the function can not be described in a few
sentences, this is a good clue that the function probably needs to be broken up
into smaller functions.

8.8.2 Parameters
Every parameter passed to the function should be listed and defined directly
before the function declaration and after the function description. Parameters
which act as output variable should preceded those which act as input variables.
In defining the parameters, each should be designated as an output or input
parameter.

8.8.3 Variables
All variables in a function should be initialized and commented at the
beginning of a function. Each variable should have a description of use and
where possible an indication of the allowable range of values. Variable
declarations should be annotated with endline comments where possible.

8.8.4 Error Correction
Every error found and corrected in a subroutine should be commented. The
comment should clearly delineate which part of the code was fixed and
reference the revision where the bugfix is described in detail along with the
data and the fixer.

8.8.5 Example

8.9 Function Delineation

Between every function use a one line structure of the form:
//--
to indicate the end of a function and the start of a new one.

9. Function parameter ordering
Parameters which act as output variable should preceded those which act as input variables. In
defining the parameters, each should be designated as an output or input parameter.

10. Enumerations
Enumeratations should have enumerators with all capitalized characters and have the
enumeration name as a prefix followed by an underscore and then a unique identifier. The
enumeration name should have the first character capitalized. All enumerations should include a
default or null enumerator.

Example:

enum Color { COLOR_RED, COLOR_BLUE, COLOR_BLUE, COLOR_NONE };

All enumerated variables should contain alpha numeric characters with the words being
separated by capitalization followed by the suffix _E.
Enumerated values are distinguished by the suffix _E and are an exception to the rule that no
variable contain the underline ("_") character.

Member enumerated variables are distinguished from local enumerated variables by capitalizing
the first character in the variable. Local enumerated variables only have the interior words
capitalized, not the first letter.

Examples:

Color MyColor_E = COLOR_BLUE; // initializing a member enumerated variable
Color anotherColor_E = COLOR_RED; // initializing a local enumerated variable

11. Static Variables
All static variables should contain alpha numeric characters with the words being separated by
capitalization followed by the suffix _S.
Static variables are distinguished by the suffix _S and are an exception to the rule that no
variable contain the underline ("_") character.
Member static variables are distinguished from local static variables by capitalizing the first
character in the variable. Local static variables only have the interior words capitalized, not the
first letter.
The initialization of all class static variable should occur at the beginning of the source file which
contains the constructors for the class. The initialization of all static variable should be proceeded
and followed by comments of the form:

Examples:

in the .h file we have (ignoring the header comments)

in the .C file we have (ignoring the header comments)

#include “MyClass.h”

12. TypeDefs
All static variables should contain alpha numeric characters with the words being separated by
capitalization followed by the suffix _T.
All typedef declarations should occur at the head of the .C file in which they are utilized, not in
the .h file.

Example .C file:

13. Friends
Where do we declare classes as friends in a class definition. Where do we put the friended
functions inside of a class.
All friended classes should be declared before the public section of a class definition.

14. Templates, Exceptions, and the STL
Utilization of templates, exception, or the STL is permissible only if the capability is
conditionally compiled. The default functionality of all classes within the FrameWork should not
depend upon these capabilities since most compilers do not support this extended functionality of

C++. Nonetheless, some compilers (such as the Photon compiler on black) have this
functionality. We should start designing our classes to utilize these capabilities but keep their
introduction into the framework conditional until the vendors catch up.

